545 research outputs found

    Combined fast multipole-QR compression technique for solving electrically small to large structures for broadband applications

    Get PDF
    An approach that efficiently solves for a desired parameter of a system or device that can include both electrically large fast multipole method (FMM) elements, and electrically small QR elements. The system or device is setup as an oct-tree structure that can include regions of both the FMM type and the QR type. An iterative solver is then used to determine a first matrix vector product for any electrically large elements, and a second matrix vector product for any electrically small elements that are included in the structure. These matrix vector products for the electrically large elements and the electrically small elements are combined, and a net delta for a combination of the matrix vector products is determined. The iteration continues until a net delta is obtained that is within predefined limits. The matrix vector products that were last obtained are used to solve for the desired parameter

    Technique for Solving Electrically Small to Large Structures for Broadband Applications

    Get PDF
    Fast iterative algorithms are often used for solving Method of Moments (MoM) systems, having a large number of unknowns, to determine current distribution and other parameters. The most commonly used fast methods include the fast multipole method (FMM), the precorrected fast Fourier transform (PFFT), and low-rank QR compression methods. These methods reduce the O(N) memory and time requirements to O(N log N) by compressing the dense MoM system so as to exploit the physics of Green s Function interactions. FFT-based techniques for solving such problems are efficient for spacefilling and uniform structures, but their performance substantially degrades for non-uniformly distributed structures due to the inherent need to employ a uniform global grid. FMM or QR techniques are better suited than FFT techniques; however, neither the FMM nor the QR technique can be used at all frequencies. This method has been developed to efficiently solve for a desired parameter of a system or device that can include both electrically large FMM elements, and electrically small QR elements. The system or device is set up as an oct-tree structure that can include regions of both the FMM type and the QR type. The system is enclosed with a cube at a 0- th level, splitting the cube at the 0-th level into eight child cubes. This forms cubes at a 1st level, recursively repeating the splitting process for cubes at successive levels until a desired number of levels is created. For each cube that is thus formed, neighbor lists and interaction lists are maintained. An iterative solver is then used to determine a first matrix vector product for any electrically large elements as well as a second matrix vector product for any electrically small elements that are included in the structure. These matrix vector products for the electrically large and small elements are combined, and a net delta for a combination of the matrix vector products is determined. The iteration continues until a net delta is obtained that is within the predefined limits. The matrix vector products that were last obtained are used to solve for the desired parameter. The solution for the desired parameter is then presented to a user in a tangible form; for example, on a display

    Some Experiments and Issues to Exploit Multicore Parallelism in a Distributed-Memory Parallel Sparse Direct Solver

    Get PDF
    MUMPS is a parallel sparse direct solver, using message passing (MPI) for parallelism. In this report we experiment how thread parallelism can help taking advantage of recent multicore architectures. The work done consists in testing multithreaded BLAS libraries and inserting OpenMP directives in the routines revealed to be costly by profiling, with the objective to avoid any deep restructuring or rewriting of the code. We report on various aspects of this work, present some of the benefits and difficulties, and show that 4 threads per MPI process is generally a good compromise. We then discuss various issues that appear to be critical in a mixed MPI-OpenMP environment

    Precise Error Bounds for Numerical Approximations of Fractional HJB Equations

    Full text link
    We prove precise rates of convergence for monotone approximation schemes of fractional and nonlocal Hamilton-Jacobi-Bellman (HJB) equations. We consider diffusion corrected difference-quadrature schemes from the literature and new approximations based on powers of discrete Laplacians, approximations which are (formally) fractional order and 2nd order methods. It is well-known in numerical analysis that convergence rates depend on the regularity of solutions, and here we consider cases with varying solution regularity: (i) Strongly degenerate problems with Lipschitz solutions, and (ii) weakly non-degenerate problems where we show that solutions have bounded fractional derivatives of order between 1 and 2. Our main results are optimal error estimates with convergence rates that capture precisely both the fractional order of the schemes and the fractional regularity of the solutions. For strongly degenerate equations, these rates improve earlier results. For weakly non-degenerate problems of order greater than one, the results are new. Here we show improved rates compared to the strongly degenerate case, rates that are always better than 1/2

    Summary of Illinois Regulations and Review of Treatment Alternatives for Contaminated Soils in Right-of-Ways

    Get PDF
    Industrial activities and vehicular transportation often pollute roadside soils with toxic mixtures of petroleum derivatives, combustion byproducts, and metal contaminants. Of these contaminants, semi-volatile organic compounds and metallic inorganics are commonly present at levels exceeding regulatory limits and require special handling if found in land to be acquired by the Illinois Department of Transportation (IDOT) for right-of-way (ROW). The objective of this review was to investigate various on-site and in situ treatment alternatives capable of remediating soil contaminated with high-molecular-weight polycyclic aromatic hydrocarbons and/or metals. Current environmental laws, regulations, and remediation best management practices were also reviewed as they pertain to contaminated soils in construction ROWs. The goal of the review was to provide IDOT with the information needed to reexamine the current practice of hauling contaminated soil off site for disposal at sites where contemporary technologies can achieve reductions in cost, time, and nuisance. The ultimate goal was to evaluate both conventional and emerging technologies adaptable for use at construction sites in Illinois, capable of treating soil to the extent it may be reused as fill material in line with state and federal regulations. Findings from this review were used to develop an experimental program and recommend effective on-site treatment options to minimize the generation of non-special, special, and hazardous wastes. The suggested treatments herein are conditionally cost-effective processes that minimize construction delays while demonstrating respect for the environment.IDOT-R27-183-HSOpe
    corecore